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Constant-Cutoff Approach to Axially Symmetric
Dibaryons

Nils Dalarsson1
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We suggest a quantum stabilization method for the SU(2) s -model, based on
the constant-cutoff limit of the cutoff quantization method developed by
Balakrishna et al., which avoids the difficulties with the usual soliton boundary
conditions pointed out by Iwasaki and Ohyama. We investigate the baryon
number B 5 1 sector of the model and show that after the collective coordinate
quantization it admits a stable soliton solution which depends on a single
dimensional arbitrary constant. We then study the dibaryon configurations in
this approach, using the generalized axially symmetric ansatz to determine
the soliton background. Thus we calculate the rotational contributions to the
masses of the axially symmetric dibaryons and show that they are in qualitative
agreement with the results obtained using the complete Skyrme model. We
conclude also that, as in the case of the complete Skyrme model, the lowest
allowed S 5 2 2 state has the quantum numbers of the H-particle. We find
that in the present approach, similarly to the case of the complete Skyrme
model, this particle is bound, even though the neglected vacuum effects might
contribute to the unbinding of the H-particle.

1. INTRODUCTION

It was shown by Skyrme (1961, 1962) that baryons can be treated as

solitons of a nonlinear chiral theory. The original Lagrangian of the chiral

SU(2) s -model is

+ 5
F 2

p

16
Tr - m U - m U + (1.1)

where
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U 5
2

F p
( s 1 i t ? p ) (1.2)

is a unitary operator (UU + 5 1) and F p is the pion-decay constant. In (1.2),

s 5 s (r) is a scalar meson field and p 5 p (r) is the pion-isotriplet.

The classical stability of the soliton solution to the chiral s -model

Lagrangian requires an additional ad hoc term, proposed by Skyrme (1961,

1962), to be added to (1.1)

+Sk 5
1

32e 2 Tr[U + - m U, U + - n U ]2 (1.3)

with a dimensionless parameter e and where [A, B] 5 AB 2 BA. It has been

shown by several authors (Adkins et al., 1983; see also Witten, 1979, 1983a,b;

for extensive references see Holzwarth and Schwesinger, 1986, and Nyman

and Riska, 1990) that, after the collective quantization using the spherically

symmetric ansatz

U0(r) 5 exp[i t ? r0 F (r)], r0 5 r/r (1.4)

the chiral model, with both (1.1) and (1.3) included, gives good agreement

with experiment for several important physical quantities. Thus it should be

possible to derive the effective chiral Lagrangian, obtained as a sum of (1.1)

and (1.3), from a more fundamental theory like QCD. On the other hand, it

is not easy to generate a term like (1.3) and give a clear physical meaning

to the dimensionless constant e in (1.3) using QCD.

Mignaco and Wulck (1989) (MW) indicated therefore a possibility to

build a stable single-baryon (n 5 1) quantum state in the simple chiral theory,

with the Skyrme stabilizing term (1.3) omitted. MW showed that the chiral

angle F (r) is in fact a function of a dimensionless variable s 5 1±2 x 9(0)r,

where x 9(0) is an arbitrary dimensional parameter intimately connected to

the usual stability argument against the soliton solution for the nonlinear s -

model Lagrangian.

Using the adiabatically rotated ansatz U (r,t) 5 A (t)U0(r) A +(t), where

U0(r) is given by (1.4), MW obtained the total energy of the nonlinear s -

model soliton in the form

E 5
p
4

F 2
p

1

x 9(0)
a 1

1

2

[ x 9(0)]3

( p /4)F 2
p b

J (J 1 1) (1.5)

where
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a 5 #
`

0 F 1

4
s 2 1 d^

ds 2
2

1 8 sin2 1 14 ^ 2 G ds (1.6)

b 5 #
`

0

ds
64

3
s 2sin2 1 14 ^ 2 (1.7)

and ^(s) is defined by

F (r) 5 F (s) 5 2 n p 1 1±4 ^(s) (1.8)

The stable minimum of the function (1.5) with respect to the arbitrary dimen-

sional scale parameter x 9(0) is

E 5
4

3
F p F 3

2 1 p4 2
2

a 3

b
J (J 1 1) G

1/4

(1.9)

Despite the nonexistence of the stable classical soliton solution to the

nonlinear s -model, it is possible, after collective coordinate quantization, to

build a stable chiral soliton at the quantum level, provided that there is a

solution F 5 F (r) which satisfies the soliton boundary conditions, i.e., F (0) 5
2 n p , F ( ` ) 5 0, such that the integrals (1.6) and (1.7) exist.

However, as pointed out by Iwasaki and Ohyama (1989), the quantum

stabilization method in the form proposed by Mignaco and Wulck (1989) is

not correct since in the simple s -model the conditions F (0) 5 2 n p and

F ( ` ) 5 0 cannot be satisfied simultaneously. In other words, if the condition

F (0) 5 2 p is satisfied, Iwasaki and Ohyama obtained numerically F ( ` ) ª
2 p /2, and the chiral phase F 5 F (r) with correct boundary conditions does
not exist.

Iwasaki and Ohyama also proved analytically that both boundary condi-

tions F (0) 5 2 n p and F ( ` ) 5 0 cannot be satisfied simultaneously. Introduc-

ing a new variable y 5 1/r into the differential equation for the chiral angle

F 5 F (r), we obtain

d 2F

dy2 5
1

y 2 sin 2F (1.10)

There are two kinds of asymptotic solutions to equation (1.10) around the

point y 5 0, which is called a regular singular point if sin 2F ’ 2F. These
solutions are

F ( y) 5
m p
2

1 cy2, m even integer (1.11)

F ( y) 5
m p
2

1 ! cy cos F ! 7

2
ln(cy) 1 a G , m odd integer (1.12)
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where c is an arbitrary constant and a is a constant to be chosen appropriately.

When F (0) 5 2 n p , then we want to know which of these two solutions is

approached by F ( y) when y ® 0 (r ® ` ). In order to answer that question
we multiply (1.10) by y 2F 8( y), integrate with respect to y from y to ` , and

use F (0) 5 2 n p . Thus we get

y 2F 8( y) 1 #
`

y

2y [F 8( y)]2 dy 5 1 2 cos[2F (y)] (1.13)

Since the left-hand side of (1.13) is always positive, the value of F ( y) is
always limited to the interval n p 2 p , F (y) , n p 1 p . Taking the limit

y ® 0, (1.13) is reduced to

#
`

0

2y [F 8( y)]2 dy 5 1 2 ( 2 1)m (1.14)

where we used (1.11)±(1.12). Since the left-hand side of (1.14) is strictly
positive, we must choose an odd integer m. Thus the solution satisfying

F (0) 5 2 n p approaches (1.12) and we have F ( ` ) Þ 0. The behavior of the

solution (1.11) in the asymptotic region y ® ` (r ® 0) is investigated by

multiplying (1.10) by F 8( y), integrating from 0 to y, and using (1.11). The

result is

[F 8( y)]2 5
2 sin2F ( y)

y 2 1 #
y

0

2 sin2F ( y)

y 3 dy (1.15)

From (1.15) we see that F 8( y) ® const as y ® ` , which means that F (r) .
1/r for r ® 0. This solution has a singularity at the origin and cannot satisfy

the usual boundary condition F (0) 5 2 n p .
In Dalarsson (1991a,b, 1992), I suggested a method to resolve this

difficulty by introducing a radial modification phase w 5 w (r) in the ansatz

(1.4) as follows:

U (r) 5 exp[i t ? r0F (r) 1 i w (r)], r0 5 r/r (1.16)

Such a method provides a stable chiral quantum soliton, but the resulting

model is an entirely noncovariant chiral model, different from the original

chiral s -model.

In the present paper we use the constant-cutoff limit of the cutoff quanti-

zation method developed by Balakrishna et al. (1991; see also Jain et al.,
1989) to construct a stable chiral quantum soliton within the original chiral

s -model. We then study the dibaryon configurations in this approach, using

the generalized axially symmetric ansatz to determine the soliton background.

Thus we calculate the rotational contributions to the masses of the axially
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symmetric dibaryons and show that they are in qualitative agreement with

results obtained in the complete Skyrme model (Thomas et al., 1994). We

conclude also that, as in the complete Skyrme model (Thomas et al., 1994),
the lowest allowed S 5 2 2 state has the quantum numbers of the H-particle.

We find that in the present approach, similarly to the case of the complete

Skyrme model (Thomas et al., 1994), this particle is bound, even though the

neglected vacuum effects might contribute to the unbinding of the H-particle.

The reason why the cutoff approach to the problem of the chiral quantum

soliton works is connected to the fact that the solution F 5 F (r) which
satisfies the boundary condition F ( ` ) 5 0 is singular at r 5 0. From the

physical point of view the chiral quantum model is not applicable to the

region about the origin, since in that region there is a quark-dominated bag

of the soliton.

However, as argued in Balakrishna et al. (1991), when a cutoff e is

introduced, then the boundary conditions F ( e ) 5 2 n p and F ( ` ) 5 0 can
be satisfied. In Balakrishna et al. (1991) an interesting analogy with the

damped pendulum is discussed, showing clearly that as long as e . 0, there

is a chiral phase F 5 F (r) satisfying the above boundary conditions. The

asymptotic forms of such a solution are given by (2.2) in Balakrishna et al.
(1991). From these asymptotic solutions we immediately see that for e ® 0
the chiral phase diverges at the lower limit.

2. CONSTANT-CUTOFF STABILIZATION

Substituting (1.4) into (1.1), we obtain for the static energy of the

chiral baryon

E0 5
p
2

F 2
p #

`

e (t)

dr F r 2 1 dF

dr 2
2

1 2 sin2F G (2.1)

In (2.1) we avoid the singularity of the profile function F 5 F (r) at the

origin by introducing the cutoff e (t) at the lower boundary of the space

interval r P [0, ` ], i.e., by working with the interval r P [ e , ` ]. The cutoff
itself is introduced following as a dynamic time-dependent variable.

From (2.1) we obtain the following differential equation for the profile

function F 5 F (r):

d

dr 1 r 2 dF

dr 2 5 sin 2F (2.2)

with the boundary conditions F ( e ) 5 2 p and F ( ` ) 5 0, such that the correct

soliton number is obtained. The profile function F 5 F [r; e (t)] now depends

implicitly on time t through e (t). Thus in the nonlinear s -model Lagrangian
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L 5
F 2

p

16 # Tr( - m U - m U +) d 3r (2.3)

we use the ansaÈ tze

U (r, t) 5 A (t)U0(r, t)A +(t), U +(r, t) 5 A (t)U +
0(r, t)A +(t) (2.4)

where

U0(r, t) 5 exp{i t ? r F [r; e (t)]} (2.5)

The static part of the Lagrangian (2.3), i.e.,

L 5
F 2

p

16 # Tr( ¹ U ? ¹ U +) d 3r 5 2 E0 (2.6)

is equal to minus the energy E0 given by (2.1). The kinetic part of the

Lagrangian is obtained using (2.4) with (2.5) and is equal to

L 5
F 2

p

16 # Tr( - 0U - 0U
+) d 3r 5 bx2 Tr[ - 0 A - 0 A +] 1 c [xÇ (t)]2 (2.7)

where

b 5
2 p
3

F 2
p #

`

1

sin2F y 2dy, c 5
2 p
9

F 2
p #

`

1

y 2 1 dF

dy 2
2

y 2dy (2.8)

with x (t) 5 [ e (t)]3/2 and y 5 r / e . On the other hand, the static energy functional
(2.1) can be rewritten as

E0 5 ax2/3, a 5
p
2

F 2
p #

`

1 F y 2 1 dF

dy 2
2

1 2 sin2F G dy (2.9)

Thus the total Lagrangian of the rotating soliton is given by

L 5 cxÇ 2 2 ax2/3 1 2bx2 a
Ç

v a
Ç v (2.10)

where Tr( - 0 A - 0 A +) 5 2 a
Ç

v a
Ç v and a v (v 5 0, 1, 2, 3) are the collective

coordinates defined as in Bhaduri (1988). In the limit of a time-independent
cutoff (xÇ ® 0) we can write

H 5
- L

- a
Ç v a

Ç v 2 L 5 ax2/3 1 2bx2 a
Ç

v a
Ç v 5 ax2/3 1

1

2bx2 J (J 1 1) (2.11)

where ^ J2 & 5 J (J 1 1) is the eigenvalue of the square of the soliton angular

momentum. A minimum of (2.11) with respect to the parameter x is reached at
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x 5 F 2

3

ab

J (J 1 1) G
2 3/8

« e 2 1 5 F 2

3

ab

J (J 1 1) G
1/4

(2.12)

The energy obtained by substituting (2.12) into (2.11) is given by

E 5
4

3 F 3

2

a 3

b
J (J 1 1) G

1/4

(2.13)

This result is identical to the result obtained by Mignaco and Wulck which

is easily seen if we rescale the integrals a and b in such a way that a ®
( p /4)F 2

p a and b ® ( p /4)F 2
p b and introduce f p 5 23/2F p . However, in the

present approach, as shown in Balakrishna et al. (1991), there is a profile

function F 5 F ( y) with proper soliton boundary conditions F (1) 5 2 p and

F ( ` ) 5 0 and the integrals a, b and c in (2.9)±(2.10) exist and are shown

in Balakrishna et al. (1991) to be a 5 0.78 GeV2, b 5 0.91 GeV2, and c 5
1.46 GeV2 for F p 5 186 MeV.

Using (2.13), we obtain the same prediction for the mass ratio of the

lowest states as found by Mignaco and Wulck (1989), which agrees rather

well with the empirical mass ratio for the D -resonance and the nucleon.

Furthermore , using the calculated values for the integrals a and b, we obtain

the nucleon mass M (N ) 5 1167 MeV, which is about 25% higher than the

empirical value of 939 MeV. However, if we choose the pion decay constant
equal to F p 5 150 MeV, we obtain a 5 0.507 GeV2 and b 5 0.592 GeV2,

giving exact agreement with the empirical nucleon mass.

Finally, it is of interest to know how large the constant cutoffs are for

the above values of the pion-decay constant in order to check if they are in

the physically acceptable ballpark. Using (2.12), it is easily shown that for
the nucleons (J 5 1±2 ) the cutoffs are equal to

e 5 H 0.22 fm for F p 5 186 MeV

0.27 fm for F p 5 150 MeV
(2.14)

From (2.14) we see that the cutoffs are too small to agree with the size of

the nucleon (0.72 fm), as we should expect, since the cutoffs indicate the

size of the quark-dominated bag in the center of the nucleon. Thus we find
that the cutoffs are of reasonable physical size. Since the cutoff is proportiona l

to F 2 1
p , we see that the pion-decay constant must be less than 57 MeV in

order to obtain a cutoff which exceeds the size of the nucleon. Such values

of pion-decay constant are not relevant to any physical phenomena.

3. THE SU(3)-EXTENDED SIMPLIFIED SKYRME MODEL

3.1. Introduction

It was first proposed in Jaffe (1977), based on a bag-model calculation,

that some hexa-quark states may be stable against strong decays. However,
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it has been shown (Aeerts et al., 1978; Liu and Wong, 1982; Mulders and

Thomas, 1983) that symmetry-breaking effects, center-of-mass corrections,

pion cloud around the bag, etc., tend to decrease the binding of the hexa-
quark states and to increase the uncertainty of their existence. Although the

analysis so far provides no evidence for a stable H-dibaryon, new experiments

are being carried out to further investigate the issue (Quinn, 1992).

It is therefore of interest to apply the constant-cutoff approach described

above in the CHK model of strange axially symmetric dibaryons (Callan and

Klebanov, 1985; Callan et al., 1988) to study the strange dibaryon stability
and compare the corresponding results obtained using the complete Skyrme

model (Thomas et al., 1994).

3.2. The Effective Interaction

The Lagrangian density for a dibaryon system with pseudoscalar mesons

is given, with Skyrme stabilizing term omitted, by (Dalarsson, 1993, 1995a±d,

1996a±c, 1997a±d)

+ 5
F 2

p

16
Tr - m U - m U + 1

F 2
p m 2

p 1 2F 2
K m 2

K

48
Tr(U 1 U + 2 2)

2
1

48
(F 2

K 2 F 2
p ) Tr[(1 2 ! 3 l 8)(U - m U + - m U 1 U + - m U - m U+)]

1
1

24
(F 2

K m 2
K 2 F 2

p m 2
p ) Tr[ ! 3 l 8(U 1 U +)] (3.1)

where m p and mK are pion and kaon masses, respectively, and FK is the kaon

weak-decay constant with the empirical value FK 5 226 MeV. The first term

in (3.1) is the usual s -model Lagrangian, while the remaining three terms

are all chiral- and flavor-symmetry-breaking terms, present in the mesonic
sector of the model, which will be used in this form even for the multibaryon

(n . 1) states. All flavor-symmetry-breaking terms in the effective Lagrangian

(3.1) also break the chiral symmetry, just as quark-mass terms do in the

underlying QCD Lagrangian. In addition to the action, obtained using the

Lagrangian (3.1), the Wess±Zumino action in the form

S 5 2
iNc

240 p 2

3 # d 5x e m n a b g Tr[U + - m U U + - n U U + - a U U + - b U U + - g U ] (3.2)

must be included into the total action of a dibaryon system, where Nc is the

number of colors in the underlying QCD. The Wess±Zumino action defines
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the topological properties of the model, important for the quantization of the

solitons. In the SU(2) case the Wess±Zumino action vanishes identically and

was therefore not present in the discussions of Sections 1 and 2 here.
In the present approach the meson±soliton field is written in the form

U 5 ! U p UK ! U p (3.3)

where U p is SU(3) extension of the usual SU(2) skyrmion field used to

describe the nucleon spectrum, and UK is the field describing the kaons

U p 5 F u p 0

0 1 G , UK 5 exp H i
23/2

F p F 0 K

K + 0 G J (3.4)

In the single-baryon (n 5 1) sector the lowest energy states have the hedgehog

structure within SU(2) given by (1.4). The lowest dibaryon states (Dalarsson,

1993, 1995a±d, 1996a±c, 1997a±c) are characterized by an axially symmetric

form of U leading to a torus-shaped baryon-number density, i.e., we have
the SU(2) ansatz

u p (r) 5 exp[i t ? h F (r)], h 5 3
sin a cos n f
sin a sin n f

cos a 4 (3.5)

where the variational function

a 5 u 1 o
m

k 5 1

ak sin(2k u ) (3.6)

is used instead of the usual spherical coordinate u . The two-dimensional

vector K in (3.4) is the kaon doublet

K 5 F K +

K 0 G , K + 5 [K 2 K 0] (3.7)

For n Þ 1 it is customary (Dalarsson, 1993, 1995a±d, 1996a±c, 1997a±c;
Thomas et al., 1994) to use the following ansatz for the kaon field:

K (r, t) 5 k (r, t) t ? h x (3.8)

where x is a two-component spinor.
We now substitute (3.3), with U p and UK defined by (3.4), using (3.5)

with (3.6), and (3.7) with (3.8), into the total action of the kaon±soliton

system and expand UK to second order in kaon fields (3.8), to obtain the

effective interaction Lagrangian for the kaon±soliton system:
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L 5 #
`

e
r 2dr F kÇ +kÇ 2

- k +

- r

- k

- r
1 i l (r)(kÇ +k 2 k +kÇ )

2 (m 2
K 2 v0(r))k

+k G (3.9)

where e is the constant cutoff defined as in (2.1) and we introduced the

quantities l (r) and v0(r) as follows:

l (r) 5 2
Nc

2 p 2F 2
K

sin2F

r 2

dF

dr

n

2 #
p

0

d u sin a
d a
d u

(3.10)

v0 5
1

4 1 dF

dr 2
2

1
cos F(1 2 cos F )

r 2

1

2 #
p

0

d u sin u F 1 d a
d u 2

2

1 n 2 sin2 a
sin2 u G

1
F 2

p m 2
p

2F 2
K

(1 2 cos F ) (3.11)

Diagonalization of the Hamiltonian, obtained from the Lagrangian (3.9),

gives the following kaon eigenvalue equation (Dalarsson, (1993, 1995a±d,

1996a±c, 1997a±d):

d 2k

dr2 1
2

r

dk

dr
1 [ v 2 1 2 l (r) v 2 m 2

K 2 v0(r)]k 5 0 (3.12)

The hyperfine corrections to the dibaryon masses are obtained using the

collective-coordinate quantization method, where we apply the time-

dependent spatial (R) and isospin (A ) rotations to the pion and kaon fields

as follows:

u p ® RAu p A 2 1, K ® RAK (3.13)

The angular velocities in the body-fixed frame are given by

(R 2 1RÇ )ab 5 e abc F c , A 2 1AÇ 5
i

2
t ? Q (3.14)

Using a1 and a2 as coefficients of the up and down spinor x , we obtain the

rotational part of the total Lagrangian in the following form;

Lrot 5 2 T ? Q 1 (1 2 c1)[
1±2 (3 d n,1 2 1)(T1 Q 1 1 T2 Q 2) 1 T3 Q 3

2 d n,1(T1 F 1 1 T2 F 2) 2 n (3 d n,1 2 1)T3 F 3] 1 1±2 V 1( F 2
1 1 F 2

2)

1 1±2 V 2( Q 2
1 1 Q 2

2 1 1±2 V 3(n F 3 2 Q 3)
2 2 V 4 d n,1( F 1 Q 1 1 F 2 Q 2) (3.15)
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where we used the definitions of the hyperfine constants (Dalarsson, 1993,

1995a±d, 1996a±c, 1997a±d)

c1 5 1 2 2 v n #
p

0

d u sin u sin2 a #
`

e
r 2dr k* k cos2 F

2
(3.16)

c2 5
3

2
(1 2 d n,1) 1

1

2
(3 d n,1 2 1)c1 (3.17)

In (3.17), e is the constant cutoff defined as in (2.1), and we see that for n 5
1 we have c1 5 c2 5 c, in agreement with Dalarsson (1993, 1995a±d, 1996a±c,

1997a±d). In (3.15), T k is defined as T k 5 am t k
mnan, and V k (k 5 1, 2, 3, 4)

are moments of inertia of the SU(2) sector defined by

V 1 5
1

2 #
p

O

d u sin u F 1 d a
d u 2

2

1 n 2 sin2 a
sin2 u G V 4 (3.18)

V 2 5
3

8 #
p

0

d u sin u (1 1 cos2 a ) V 4 (3.19)

V 3 5
3

4 #
p

0

d u sin u sin2 a V 4 (3.20)

V 4 5 V n 5 1 5
2 p
3 #

`

e
r 2 dr sin2F (3.21)

From the results (3.18)±(3.20) it is easily seen that for n 5 1, we obtain

V k 5 V 4 (k 5 1, 2, 3). Furthermore, (3.21) is the well-known expression for

the moment of inertia in the constant-cutoff model (Dalarsson, 1993, 1995a±d,

1996a±c, 1997a±d), where e is the constant cutoff defined as in (2.1).

3.3. The Rotational Energies

The body-fixed components J bf
k and I bf

k of spin(J ) and isospin(I ), respec-
tively, are defined by

J bf
k 5

- L

- F k

, I bf
k 5

- L

- Q k

(3.22)

The axial symmetry imposes the constraint J bf
3 5 2 n (I bf

3 1 T3), and after

the collective-coordinate quantization we obtain the rotational Hamiltonian

in the form
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Hrot 5
1

2 V 1

[J2 2 (J bf
3 )2] 1

1

2 V 2

[I2 2 (I bf
3 )2] 1

c 2
2

2 V 2

[T2 2 T 2
3]

1
1

2 V 3

(I bf
3 1 c1T3)

2 1
c2

2 V 2

(I bf
1 T 2 1 I bf

2 T+) (3.23)

The dibaryon states (n 5 2), which satisfy all the constraints imposed by the

symmetries of the system, are given by

| J, J3; I, I3; S & 5
1

8 p 2 [2(1 1 d Ibf
3 ,0 d T3,0)]

2 1/2 ! (2J 1 1)(2I 1 1)

3 [D J
J3, 2 2k( F )D I

I3, K 2 T3( Q )kT3(r, t) 2 ( 2 1)I 1 J 2 S/2D J
J3,2K( F )

3 D I
I3, 2 K 1 T3( F )K 2 T3(r, t)] (3.24)

where S is the strangeness number and K 5 I bf
3 1 T3. The parity of the state

(3.24) is ( 2 1)K. It should be noted that the state (3.24) is not an eigenstate

of the rotational Hamiltonian (3.23) since the last term in (3.23) does not

commute with T3. The proper eigenstates of the rotational Hamiltonian (3.23)
will be the combinations of states (3.24) with the same J, J3; I, I3; (J bf

3 )2

quantum numbers and different values of the T 2
3 quantum number.

For S 5 0 and S 5 2 1 only one value of T 2
3 is allowed (i.e., T 2

3 5 0

for S 5 0 and T 2
3 and 5 1±4 for S 5 2 1), and the eigenvalues of the rotation

Hamiltonian (3.23) are given by

E s 5 0
rot 5

1

2 V 1

[J (J 1 1) 2 (J bf
3 )2] 1

1

2 V 2

[I (I 1 1) 2 (I bf
3 )2]

1
1

2 V 3

(I bf
3 )2 (3.25)

and

E S 5 1
rot 5

1

2 V 1

[J(J 1 1) 2 (J bf
3 )2] 1

1

2 V 3 H (1 2 c1) F (I bf
3 )2 2

c1

4 G 1
c1

4
(J bf

3 )2 J
1

1

2 V 2 F I(I 1 1) 2 (I bf
3 )2 1 c2 1 c2

2
2 ( 2 1)I 1 J 1 1/2 d J3,0 ! I(I 1 1) 1

1

4 2 G
(3.26)

For S 5 2 2, two values of T 2
3 (i.e. T 2

3 5 0 and T 2
3 5 1) are in general

allowed, and E rot is given by the eigenvalues of
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ES 5 0
rot 5

1

2 V 1

[J(J 1 1) 2 (J bf
3 )2] 1

1

2 V 2

[I(I 1 1) 2 c2
2] 1

1

2 V 3

c1 K 2

1
c

2 V 3
c2

2 2 K 2

2 V 2

1
1 2 c1

2 V 3

K 2

c2

! 2 V 2

! 1 1 d K,O ! (I 7 K )(I 6 M )

c2

! 2 V 2

! 1 1 d K,O ! (I 7 K )(I 6 M )

2
M 2

2 V 2

1
1 2 c1

2 V 3

(M 2 2 c1) 4 (3.27)

where M 5 K 6 1. The 2 3 2 matrix is constructed using (3.24) ordered

according to increasing T 2
3.

3.4. Numerical Results

In the numerical calculations we use the empirical values of all the

parameters F p , m p , FK, mK and the calculated value of the constant-cutoff e
given by (2.14) for F p 5 186 MeV. The results of the present calculations,

compared to those obtained using the complete Skyrme model in [13], are

given in Table 1.

As in the case of the complete Skyrme model [13], we use only g1 as
the variational parameter and assume that gk 5 0 for k Þ 1 in the variational

expansion (3.6), when calculating the minimum in the B 5 2 soliton mass.

The inclusion of g2 as a second variational parameter does not lead to any

significant improvement in the energy minimum of the B 5 2 soliton.

From Table I we see that there is a qualitative agreement between the

present results and results obtained using the complete Skyrme model
(Thomas et al., 1994). The results are in general somewhat closer to those

obtained in Thomas et al. (1994) using the parameter set A, although there

is no correlation to any of the two sets used there.

If we now turn to the problem of the H-particle stability, we obtain in

the present model M (H) 2 2M ( L ) 5 2 41 MeV, indicating a binding which

is only slightly stronger than the one obtained in the complete Skyrme model
(Thomas et al., 1994), i.e., M (H) 2 2M ( L ) 5 2 34 MeV. As argued in

Thomas et al. (1994), the dynamical departures from the lowest energy

solution, possibly parametrized as zero-point fluctuations of a conveniently

chosen collective coordinate, may decrease the binding energies. Another
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Table I. Rotational Contributions to the Dibaryon States (B 5 2) in MeVa

Erot

(Thomas et al., 1991)

(I, J p ) Erot Set A Set B

S 5 0 0, 1+ 71 75 61

1, 0+ 131 113 93

NN 152 147 147

1, 2 2 201 216 177

S 5 2 1 1±2 , 0+ 65 61 46
1±
2
, 1+ 81 87 75

N L 97 92 85
3±2 , 0+ 169 157 138
1±2 , 2 2 81 87 75

S 5 2 2 0,0+ 37 21 11

L L 31 37 22

1, 0+ 91 79 66

1, 1+ 111 107 98

0, 2 2 137 119 88

1, 2 2 175 187 152

0, 2+ 221 247 195

a NN, N L , and L L are sums of the rotational contributions to the corresponding particles,

serving as rotational thresholds in each particular group of states.

effect that may decrease the binding energies is the Casimir effect leading

to the 2(N 0
C) contributions. Due to the relatively weak binding obtained both

in the complete Skyrme model (Thomas et al., 1994) and here, it is likely
that the above two mechanisms may be strong enough to unbind the H-

particle. A more datailed account of these effects can be found in Thomas

et al. (1994) and in references therein.

4. CONCLUSIONS

The present paper shows the possibility of using the Skyrme model for

calculation of the rotational energies and spectra of axially symmetric dibary-

ons without using the Skyrme stabilizing term, proportional to e 2 2, which

makes both the analytic and numerical treatment more difficult.

For such a simple model with only one arbitrary dimensional constant,
and where all parameters (F p , m p , FK, mK) are chosen equal to their empirical

values, there is qualitative agreement of the results for the rotational contribu-

tions to the axially symmetric dibaryon masses with the corresponding predic-

tions of the complete Skyrme model (Thomas et al., 1994).
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Furthermore, we find that in the present approach, similarly to the case

of the complete Skyrme model (Thomas et al., 1994), the H-particle is bound,

even though the neglected vacuum effects might contribute to the unbinding
of this particle.
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